An Analysis of Rainwater from Rural Alaska Catchments: Findings and Recommendations for Healthy Utilization

Masters of Public Health Project Practicum

Elizabeth King, MPH Graduate Student University of Alaska Anchorage

Co-Authors:

Dr. Elizabeth Hodges Snyder, PhD, MPH

Dr. Aaron Dotson, PhD, PE

Dr. Nancy Nix, MD, MPH&TM, MED, CHES

Background and Significance

- World Health Organization (WHO)
 - Household water security defined as access to 13.2 gp⁻¹d⁻¹
- Water Security in Alaska
 - Highest in U.S. for proportion of homes without in-home piped water
 - Increased risk of diseases
 - Pneumonia, MRSA, Respiratory-tract Infections, Skin Infections, and RSV

(ADEC, 2009; Brubaker, 2011; Hennessy et al., 2008; Thomas et al., 2013; Eichelberger, 2010).

Research Question & Objectives

Research Question

— What is the quality of water in rainwater catchments in rural Alaska?

Objectives:

- Sample & analyze rainwater from across the state
- Document methods and materials employed to collect rainwater
- Provide homeowners with the results of the testing on their water
- Discuss possibilities for healthy utilization of rainwater based on findings
- Discuss utilization and development of community sourced volunteer sampling

Research Methods

- Sampling Protocol Development
- Volunteer Recruitment
- Sample Collection
- Processing Rainwater samples
 - UAA Lab
 - E. coli
 - Professional Lab (SGS)
 - Conductivity

pH

Metals Scan

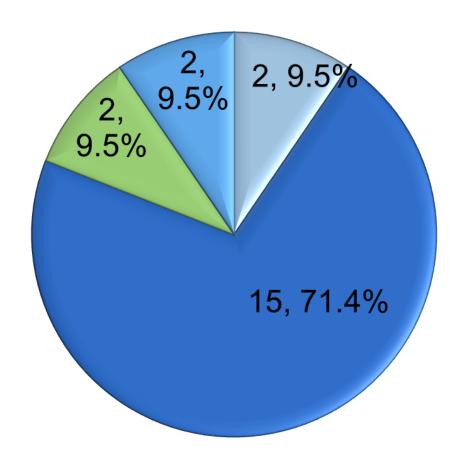
TOC

Method - Volunteers

 Volunteer recruitment method based on Adventurers & Scientists for Conservation

 Develop cadre of professionals traveling to difficult to reach places interested in health and science

Methodology

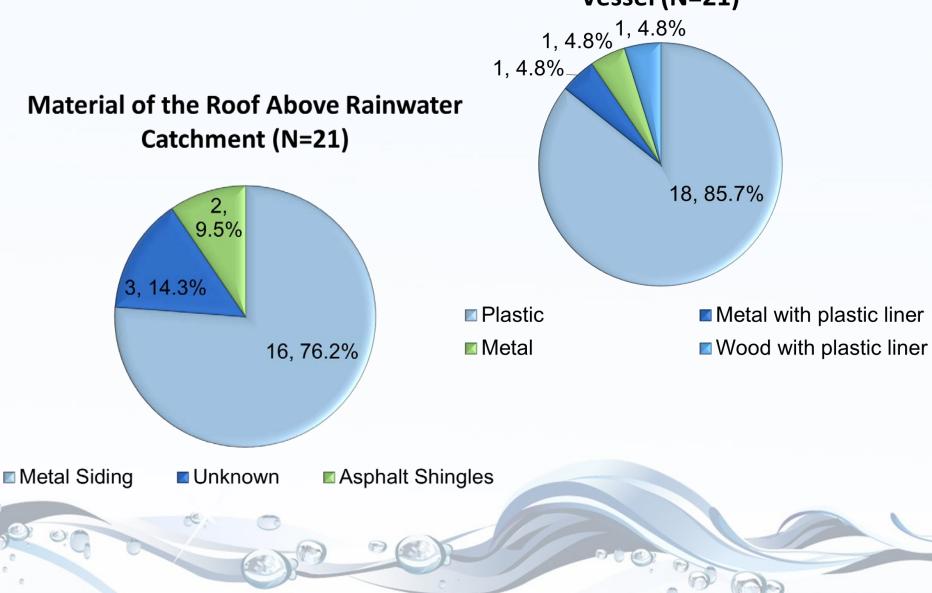

- Pilot study, convenience sample
 - Volunteers were asked to approach homes with catchments
- Sample processing Considerations
 - What was needed to ensure quality?
 - Timeline within 3 days of Collection
 - Maintain sample temperature (1°C 10°C)

Sample Locations, Samples (N), and Volunteer Group

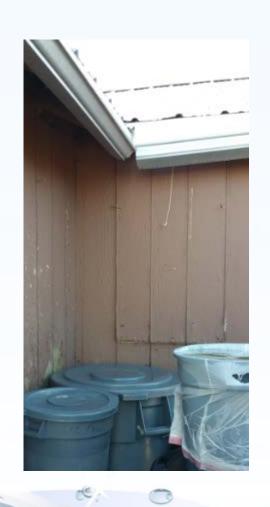
Sample Location	Samples (N)	Volunteer /Group			
Alakanuk	2	Bethel Public Health Nurses			
Brevig Mission	3	RurAL CAP			
Gambell	1	Friend of a Friend			
Hoonah	1	RurAL CAP			
Ketchikan	2	Engineers			
Kipnuk	7	Bethel Public Health Nurses			
Kivalina	2	ANTHC			
Pilot Station	1	Yukon Intertribal Watershed Council			
St. Mary's	1	Yukon Intertribal Watershed Council			
Tununak	1	Friend			

Size of the Catchment Vessel (N=21)

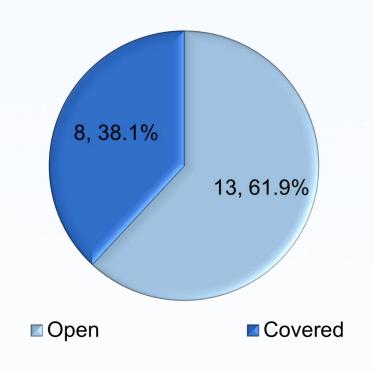
■ 5 Gallons■ 100-1000 Gallons


- < 100 Gallons</p>
- ■>1000 Gallons

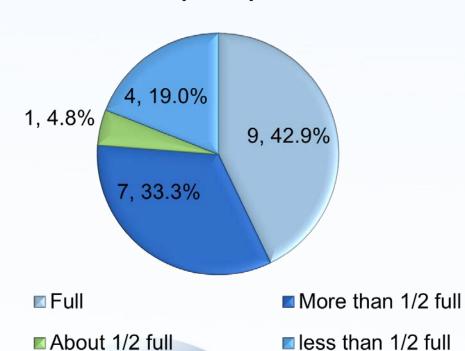
Rainwater Catchment Pictures



Material of the Rainwater Catchment Vessel (N=21)

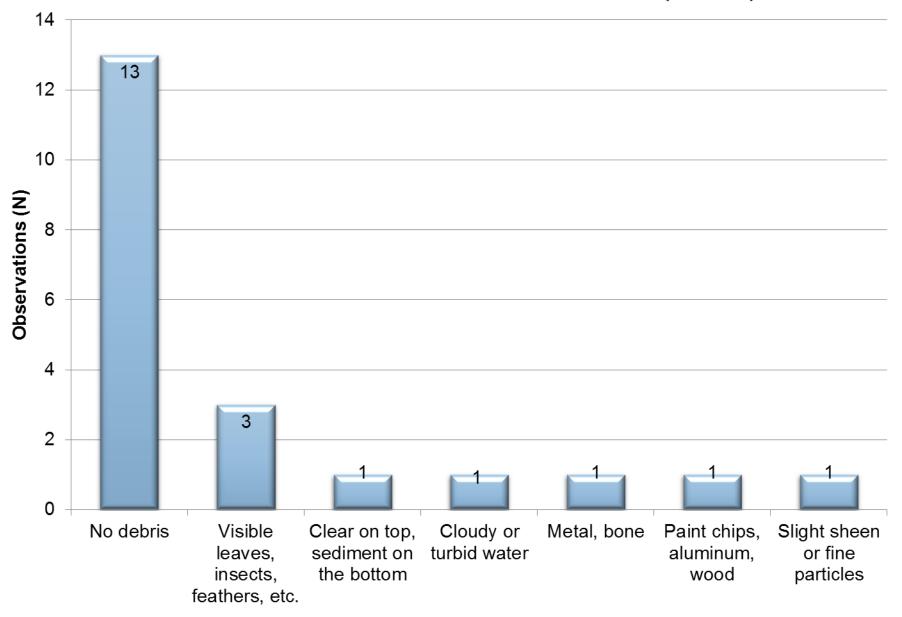


Rainwater Catchment Pictures



Was the Catchment Vessel Open or Covered? (N=21)

How Full was the Catchment Vessel? (N=21)



Rainwater Catchment Pictures

How Clean Did the Rainwater Look? (N=21)

Samples were tested for:

- Total OrganicCarbon
- pH
- Conductivity
- Aluminum
- Antimony
- Arsenic
- Barium
- Beryllium
- Boron
 - Cadmium

- Calcium
- Chromium
- Cobalt
- Copper
- Iron
- Lead
- Magnesium
- Manganese
- Mercury
- Molybdenum
- Nickel

- Potassium
- Selenium
- Silver
- Sodium
- Thallium
- Vanadium
- Zinc
- E-Coli

E-coli

- All of the 21 samples collected indicated the most probable number (MPN) for E-coli was 0. (6 of the 21 samples were within the time and temperature windows)
- Testing was conducted to ensure the result was accurate.

Metal Results μg L⁻¹

Sample #	Barium	Cadmium	Calcium	Copper	Lead	Magnesium	Manganese	Nickel	Potassium	Sodium	Zinc
MCL	2000	5	No Limit	secondary 1,000	15	100,000	secondary 50	100	10,000	250,000*	secondary 5,000
1001			2,780			1,020	5.43			5,880	179
1002			1,650				3.45			1,630	276
1003			580		4.68					1,110	2,460
1007								3.40			
1008				15.50							621
1010				10.50	1.27		27.60			3,440	3,720
1018					5.09		13.40	2.73		1,540	3,270
1019			2,150				15.30	2.55		1,820	5,140
1020					3.76		10.80	2.68		2,960	5,910
1021								2.34		2,840	445
1022	41.80	50.30						2.18		1,680	54
1023										3,490	47
1025	10.70		531		1.25	1,600	5.82			12,900	3,200
1026	6.02		555			1,490	3.64			11,800	83
1027	11.20		776				24.40			4,340	6,920
1028							5.73			1,840	
1029	22.60						13.70			1,760	347
1031			1,710	15.60		4,690	5.24			37,200	48
1032				297.00	11.20						
1033	4.70		3,280	605.00		3,440	17.40		2,040	28,300	
1038							2.33				224

Limitations

- Small sample size (N=21)
- One point in time sampling
- Potential seasonal variation
- Utilization patterns of collected rainwater

Recommendations

- Additional biological testing of rainwater catchments
- Develop a set of quality standards & recommended uses for non-potable water
- How does rainwater quality compare with other non-treated sources?
- Provide health-related education for rainwater utilization
- Proper storage and containment are key to maintaining high quality water

Thank you to all the volunteers!

- Ted Jacobson
- Anna Boyko
- Amy Modig
- Katy Krings
- Lisa Susunga
- Ju Lee
- Edda Mutter
- Danielle Stickman
- Monica Oakley
- Joe Fitzgerald

- Seth Brakke
- Paul Schuster
- Robert Taylor
- Paul Cascio
- Rachel Lord
- Korie Hickel
- Lance Whitwell

Questions?

References

- ADEC Alaska Department of Environmental Conservation, (2009) Introduction to Small Water Systems: A Course for Level I
 Operators. Retrieved from: http://dec.alaska.gov/water/opert/docs/forewordandchapter1.pdf
- Brubaker, M., Berner, J., Chavan, R., & Warren, J. (2011). Climate change and health effects in northwest Alaska. *Global Health Action*, 4, 1-5.
- Eichelberger, L. P. (2010). Living in Utility Scarcity: Energy and Water Insecurity in Northwest Alaska. *American Journal of Public Health*, 100(6), 1010-1018. doi:10.2105/AJPH.2009.160846
- EPA (2015). Table of Regulated Drinking Water Contaminants, United States Environmental Protection Agency. Retrieved from:

 http://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants#Microorganisms
- Hennessy, T. W., Ritter, T., Holman, R. C., Bruden, D. L., Yorita, K. L., Bulkow, L., Cheek, J.E., Singleton, R.J., Smith, J. (2008).
 The Relationship Between In-Home Water Service and the Risk of Respiratory Tract, Skin, and Gastrointestinal Tract Infections
 Among Rural Alaska Natives. American Journal of Public Health, 98(11), 2072-2078. doi:10.2105/AJPH.2007.115618

References (cont.)

- Howard, G., Bartram, J. (2003). Domestic Water Quantity, Service Level and Health. World Health Organization, Geneva, Switzerland, p.33.
 - http://www.who.int/water_sanitation_health/diseases/WSH03.02.pdf
- Sobsey, M. D., & World Health Organization. Water, Sanitation and Health Team. (2002). Managing water in the home: Accelerated health gains from improved water supply / prepared by Mark D. Sobsey. Geneva: World Health Organization.
- Thomas, T.K., Bell, J., Bruden, D., Hawley, M., Brubaker, M. (2013). Washeteria Closures, Infectious Disease and Community Health in Rural Alaska: A Review of Clinical Data in Kivalina, Alaska.

 International Journal of Circumpolar Health, 72, 1-4. doi:103402/ijch.v72i0.21233